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Introduction

Steady flow over the leading portion of a multicomponent airfoil section is studied us-

ing computational fluid dynamics (CFD) employing an unstructured grid. To simplify the

problem, only the inviscid terms are retained from the Reynolds-averaged Navier-Stokes

equations--leaving the Euler equations. The algorithm is derived using the finite-volume

approach, incorporating explicit time-marching of the unsteady Euler equations to a time-

asymptotic, steady-state solution. The inviscid fluxes are obtained through either of two

approximate Riemann solvers: Roe's flux difference splitting or van Leer's flux vector split-

ting. Results are presented which contrast the solutions given by the two flux functions as

a function of Mach number and grid resolution. Additional information is presented con-
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cerning code verification techniques, flow recirculation regions, convergence histories, and

computational resources.

Nomenclature

Ac, tt Cell area

ak Wave speed

c Speed of sound

e Specific energy

F, G Cartesian inviscid flux vectors

h Specific enthalpy

hk Component of H vector

H Locally face-normal flux vector

L_ Infinity error norm

L2 Least-squares error norm

M Mach number

p Pressure

R Matrix of wave signature column vectors

Rk Column vector component of R

As Length of cell side

t Time

At Time step

T Transformation matrix from Cartesian coordinates

u,v Cartesian velocity components
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U Conservative variables

AV Wave strength vector of jumps

x,y Cartesian coordinates

to local normal/tangential coordinates

a,,_ Runge-Kutta coefficient

7 Ratio of specific heats

0 Polar angle

u Courant number

p Density

q_ Flux function

Subscripts

( )0 hnage cell value

( )1 Interior cell value

( )k Vector component (k=1,2,3,4)

( )L States in the "left" cell

( )R States in the "right" cell

( ),_ Normal component

( )t Tangent component

( )o_Freestream quantity
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Superscripts

()_,(

(-)

()"

()+

()-

)n+l Time levels

Roe-averaged quantity

Smoothed values

Right-traveling information

Left-traveling information

Governing Equations

Two-dimensional, unsteady flow is described by the following conservation laws

0 "" 0 G
j/u+--,'+ox Oy

=0

where the state vector is given by
(

P

pti
U_

pv

pe
\ J



and the inviscid fluxes are

F

[3tt

pu 2 + P

puv

pub

a .W_

[7t)

pvh

Tile equation of state closes the system

1

(-_- 1)p

and for convenience, enthalpy is defined as

h=e+ p-
P

Note: for air: 7 = 1.4.

Flux Functions

The inviscid fluxes were computed using two different upwind schemes: flux difference

splitting (FDS) of Roe 1 and flux vector splitting (FVS) of van Leer. 2 Both techniques are

outlined below.



van Leer's Flux Vector Splitting

For van Leer's flux vector splitting scheme, the inviscid portion of the fluxes across a

cell face is given by

(UL, UR) : W -1 (H + (UL) + H- (UR))

where T -1 is the inverse transformation from cell face oriented coordinates to Cartesian

T -1

coordinates

1 0 0 0

0 sinO cosO 0

0 -cosO sinO 0

0 0 0 1

The fluxes are split into right-traveling and left-traveling based on the cell-centered,

face-normal Mach number, i.e.,

where

Mn >_ 1 H + =H(UL) H- =0

Mn _< -1 H +=0 H-=H(UR)

lUg[ < 1 H+=H+(UL) H-=H-(UR)

H(U) =

flUn

pu_ ÷ p

punut

pu,_h



and

( h_ ±Ipc(Mn + 1)2

h_2 h_c[(,'y-1)M,_:l:2]/7
H+(U) = =

h_ h_lCM,

j L,Oe 2(._-1) _ 2 J I'°1

Roe's Flux Difference Splitting

For Roe's flux difference splitting scheme, the flux is given as a central difference term

in addition to a dissipation term,

1 4 I*I[O(UL)+(I)(UR)] _lak _Vk]_k
_' (UL, UR) = _ -- k=l

where the wave speeds are

t_n -- _?

fin

fi,_+fi

the jumps in the wave strengths are

Ap-#_Aun
2_2

_Au,

AV=

Ap_ 2 --Ap

d2

Ap+,_Au,.,
2_2



and the wave signatures are given by

ft = 'k, k._ k3

1

fi - fi sinO

¢J+ fi cosO

k4)

0 1 1

fi cosO _ fi + fi sinO

sinO _ _ - _ cosO

1

where A ( ) represents the jump between the left and right states

_( )=( )R-( )L

and the (^) quantities are the Roe-averaged variables

= v_ uL + v_UR
v_+v_

vg-/'L + v_VR=

v_+v_

where fi, fi,_, and fit are calculated directly from t_, fi, v, and h, so

/3-- (3'-- 1)/_[]_ 1- _ (_+_)]



¢t,_ = fisinO- _cosO

fit = itcosO + ¢JsinO

To prevent expansion shocks, an entropy fix is imposed.

defined for the acoustic waves ( k = 1 and k = 4 )

A smoothed value of lakl is

lakt"= { lakl+ ¼&k
aak

with

6ak = max (4Aak,0)

This provides a parabolic (and thus continuous) curve where the wave speeds change signs

(e.g., in a transonic expansion, or at a stagnation point).

Time Integration

Time integration of the governing equations was performed by two methods: forward

Euler and Runge-Kutta, with the time step per cell area was computed via

At v

A_,u - max.r=ce, [(u,, + c) As]

where u is the Courant number.



Forward Euler

The simplest schemeis that of forward Euler

At
U n+' = U"- --R(U")

Aceu

where R is tile residual of tile cell given by

R(Un) = _ OAs
faces

This scheme was only used as a step in the debugging process enroute to the following

multi-stage scheme.

Runge-Kutta

A four-stage, optimally-smoothing, Runge-Kutta, time-stepping scheme due to Tai a was

implemented as follows

U 0 = V n

At Ru'= u°-.,A--_" (uo)
U 2 = U°-a At R_A%-;(u_)

u_: uo__ _ _(u_)

_*n(u_)U 4 = U °-a4Ac_tt

U TM = U 4

lO



with ak = [0.0833,0.2069,0.4265,1.0]. The schemewasnominally run with a Courant num-

ber of 2.0.

Boundary Conditions

The solid wall boundary condition for the airfoil was enforced ill a weak sense by setting

the cell-centered state ill an image-cell located just inside the solid boundary surface. Physi-

cally, flow tangency must be preserved at the wall, as well as a zero pressure gradient normal

to the wall. This image-cell wall-boundary procedure is of first order accuracy, because it

neglects the wall curvature. This will introduce inaccuracy in the case of a highly curved

wall that is not resolved by sufficiently fine cells on the wall. This defines tile values in the

image-cell as follows

DO ---- /91

Po = Pl

= (u,)l

(u.)0 =

where the ( )0 represents an image-cell quantity and ( )1 is the appropriate interior cell

quantity. The flow tangency condition is supplied by merely reflecting the normal component

of velocity across the boundary face. In more realistic terms, this boundary condition can

be thought of as a symmetry-plane condition.

For the farfield boundary, the image-cells were specified as freestream conditions, and

the Riemann solver simply picks the proper information to use depending on whether the
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local flow is into or out-of the computational domain. Note: a more careful outer boundary

condition for a lifting airfoil would superimpose a potential vortex velocity field at the outer

boundary.

Computational Meshes

Three different sizes of meshes were used for this project as indicated in Table 1. The

results were computed on the medium grid unless otherwise specified. Figure 1 shows a view

of each of the grids in the vicinity of the airfoil.

The Debugging Process

Debugging the code is the most labor intensive part of any project--if it is not done in

a logical manner. Steps along the debugging path were as follows:

1. Check pointers for a simple mesh.

2. Verifying cell areas were positive and correct magnitude.

3. Implement only forward Euler time stepping.

4. Setting all boundary conditions to be freestream conditions.

5. Verify both flux functions agree with one another.

6. Run angle of attacks: 0 °, -4-45 °, -4-90 °.

7. Add solid wall boundary conditions.

8. Run angle of attacks: 0°, +45 °, -t-90 °.
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9. Turn on the multistage time stepping.

10. Run angle of attacks: 0 °, +45 °, -t-90 °.

11. A freestream Mach of 2.5 was run to determine (very readily) that tile flow was going

in the right direction-indicated by a very pronounced bow shock encompassing the

front of the body.

12. A grid convergence study was conducted to check for consistency of the algorithm-see

following section.

The final check was done just from knowledge of how the flow should behave-common sense.

Results and Discussion

The flow over the leading section of a multicomponent airfoil is computed for three

different freestream Mach numbers: 0.4, 0.8, and 1.2. The Mach 0.8 case was arbitrarily

chosen for a grid convergence study, and it was run on all three meshes: coarse, medium,

and fine. Each Mach number/grid combination was also run using both of the flux functions

discussed previously.

Computational Resources

The code was primarily run oll a Hewlett Packard Apollo series 700 workstation. When

compiler-optimized, the code typically ran around 2.6 x 10.4 CPUs/iteration/cell when using

the FDS flux function. For example, a 6124 cell mesh running for 2200 iterations would have

a total CPU time of around 1 hour. Timings for different machines and flux functions are
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given in Table 2. As coded, the FVS scheme runs 40 percent faster than the FDS scheme.

Note that the Sun Sparc station runs an order of magnitude slower than either of the HPs.

Mach Number Effects

Figure 2 depicts Mach contours of the flow in the vicinity of the airfoil for three Mach

numbers: 0.4, 0.8, and 1.2. The sonic line and the M = 0.5 contour lines are labeled in each

subfigure. The remaining contour lines occur at intervals of 0.1 Mach. The results in the

left column of the figure were produced using Roe's FDS flux function and those in the right

column resulted from van Leer's FVS flux function. Comparing the left and right columns

of Fig. 2 it is apparent that the two different flux functions give nearly identical results

for the flow field. Tile only differences are minor and occur in the trailing edge/flap cavity

region which will be investigated further in the following section. The Mach 0.4 case shows a

stagnation region at the leading edge followed by two expansions: one near the leading edge

on the suction side of the airfoil and another just before the flap slot on the pressure side.

The Mach 0.8 flow contains two shocks: a strong one on the upper surface around 90 percent

chord and a smaller one following a transonic expansion in the flap cavity. There is also a

significant supersonic "bubble" on the upper surface. At Mach 1.2, the upper surface shock

moves to the trailing edge and forms the familiar "fish-tail" shock structure. Also apparent

is a weak, detached bow shock standing well off the leading edge.

Flap Cavity Region

The differences between the two flux functions become more apparent upon closer in-

spection of the flap cavity region. Figure 3 shows streamlines around the trailing portion of

the airfoil for a freestream Mach of 0.8 on all three grids for both flux functions. The figure
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showsthe results using Roe's FDS in the left column and results using van Leer's FVS in

the right column. Notice that for all threegrids, FDS showsa vortical structure in the flap

region,while FVS only showsa vortical structure for the two finer grids. In addition, FDS

supports a muchmorecomplexstructure--the fine meshshowingthree interacting recircu-

lation regions. This is a result of the lower dissipation inherent in Roe's FDS schemeas

comparedto van Leer's FVS scheme.

Grid Convergence

Shownin Fig. 4areMachnumbercontoursabout the airfoil for threedifferent grids. The

flow has a freestreamMach numberof 0.8 and wascomputedusing the FDS flux function.

As portrayed in the Fig. 4, the global solution only changeswith respectto the thicknessof

the shock,implying that the schemeis consistentwith respectto the governingequations.

Convergence Histories

A summary of the total number of iterations required to reach an L2 error norm of

the energy equation of 1.0 x l0 -6 is shown in Table 3. Roe's FDS scheme takes longer to

converge than van Leer's FVS scheme in every case. This is apparently due to the highly

dissipative nature of FVS which tends to smooth spurious transients. In two cases, the FDS

scheme even fails to converge to the specified error tolerance-more on this to follow.

Shown in Fig. 5 are normalized convergence histories for three different Mach numbers

using the two flux functions. (Note: the straight line at the tail of the iteration line-plots is

an artifact of the plotting routine used.) This figure clearly shows the convergence problem

inherent in this application of Roe's FDS flux function. Notice the cyclic behavior of the

error residual. This corresponds to the following cycle: a flow feature moving just slightly,
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the disturbance propagating into the rest of the field, and a reflected disturbance telling

the feature to moveback. The processrepeatswith a cyclecorrespondingto speedof the

disturbance and the numberof cells through which it passes.This wasverified by halving

the Courant number and noting a increaseby a factor of two in the cycleperiod--the shape

remainedthe same.

Shownin Fig. 6 and Fig. 7 are the regionswhich contained the most Lo_ error norms

during the run for each of two cases. The left side of each figure is a blocked-contour plot of

the number of times a particular cell was responsible for the Loo error norm. The right side of

the figures shows the streamlines in the same viewing area. Figure 6 corresponds to a Mach

0.8 flow using the fine grid and Fig. 7 corresponds to a Mach 1.2 flow using the medium grid.

For the Mach 0.8 case, tile flow features responsible for the convergence problem appears to

be both the transonic expansion on the bottom edge of the flap cavity region and the shock

standing on the upper surface of the airfoil. However, in the Mach 1.2 case, the flow feature

responsible for the convergence problem is the shock just ahead of the recirculation zone in

the center of the airfoil flap cavity region.

An attempt was made to alleviate the convergence problem by "smoothing" the grid

slightly. This was done by telling each node to move toward the centroid formed by its

neighbors. This smoothing process altered the grid enough to stabilize the flow features in

slightly different locations--hopefully allowing convergence; but tile residual just hung at a

slightly lower error norm.
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Conclusion

The results indicate that an airfoil experiences radically different flow fields as a function

of Mach number. Features range from smooth variations of the flow properties at a low Mach

numbers to discontinuous shocks forming at higher Mach numbers. In spite of the range of

flow conditions, both flux functions appear to work quite well. Even though FDS is slightly

more expensive than FVS and it experiences convergence difficulties, it appears to do a better

job resolving recirculation regions than does FVS.
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Table 1: Mesh statistics

Name Cells Edges Nodes

coarse 2697 4098 1401

medium 4025 6114 2089

fine 6124 9308 3184
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Table 2: CPU secondsper iteration per cell

Machine FDS FVS

SunSparc1+
HP Apollo 710
HP Apollo 720

3.9 x 10 -3 1.4 X 10 -3

2.6 x 10 -4 1.8 X 10 -4

2.5x 10 -4 1.7x 10 -4
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Table 3: Number of iterations for convergence

Mach Grid FDS FVS

0.4 medium 2542 2123

0.8 coarse 1738 1496

medium 2733 1909

fine hung 2396

1.2 medium hung 1823
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(a) Course grid.
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(b) Medium grid.

(c) Fine grid.

Figure 1: Computational meshes employed.
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(e) Mach 1.2 FDS. (f) Mach 1.2 FVS.

Figure 2: Comparison of Mach number contours for three Mach numbers (AM = 0.1).
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Figure 3: Streamline comparison for the flap cavity region of the airfoil using three

different grids.
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Figure 4: Comparison of Mach number contours for Moo = 0.8 on three different grids
(AM = 0.1).
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Figure 5: Normalized convergence histories for three Mach numbers.
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(a) Blocked-contours of Loo norm occur- (b) Streamlines in the same vicinity.
rences.

Figure 6: Regions responsible for the convergence difficulties of FDS scheme at Mach 0.8,

fine grid.
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a) Blocked-contoursof Loo norm occur-
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(b) Streamlines in the same vicinity.

Figure 7: Regions responsible for the convergence difficulties of FDS scheme at Mach 1.2,

medium grid.
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